Eğriler Teorisi
Eğrileri genel ve yerel özellikleri itibarı ile ayrıntılı olarak açıklamayı hedefleyen bu kitap, Matematik bölümlerinde okuyan lisans ve lisansüstü öğrenciler ile birçok teknik çalışma alanının farklı problemlerini modellerken veya analiz ederken eğrilere ve ilgili kavramlara dayalı yaklaşımlar kullanma ihtiyacı duyan okuyucular için kaynak olacak şekilde hazırlanmıştır. İlk bölüm, eğriler teorisinin tarihsel gelişim sürecine hızlı bir bakış atmamızı sağlarken ikinci bölüm, kitap boyunca kullanılacak temel tanımlarla bizi tanıştırmaktadır. Üçüncü bölümde, eğriler yüksek boyutlu uzaylarda diferansiyel geometrik açıdan derinlemesine incelenmektir. Dört ve beşinci bölümlerde de özel olarak sırasıyla düzlemde ve 3-boyutlu uzayda çalışıyor olmanın sağladığı avantajlar veya farklılar ile eğriler ve ilgili kavramlar açıklanmaktadır. Özellikle mekanizmaların çalışma prensiplerinde kendine uygulama alanı bulan, bilinen eğri çiftleri altıncı bölümde tanıtılmaktadır. Öklid geometrisinin temel kavramlarının Kartezyen koordinatlarda sayısal formülasyonlara sahip olması gerçeği ile aritmetik ve cebirsel yaklaşımı birleştiren analitik geometrinin, geometrik problemlerle başa çıkmak için güçlü yöntemler sağlamasından dolayı gerçek hayat problemlerinde en çok karşılaştığımız eğriler arasında yer alan konikler yedinci bölümde analitik olarak açıklanmaktadır.
- Açıklama
Eğrileri genel ve yerel özellikleri itibarı ile ayrıntılı olarak açıklamayı hedefleyen bu kitap, Matematik bölümlerinde okuyan lisans ve lisansüstü öğrenciler ile birçok teknik çalışma alanının farklı problemlerini modellerken veya analiz ederken eğrilere ve ilgili kavramlara dayalı yaklaşımlar kullanma ihtiyacı duyan okuyucular için kaynak olacak şekilde hazırlanmıştır. İlk bölüm, eğriler teorisinin tarihsel gelişim sürecine hızlı bir bakış atmamızı sağlarken ikinci bölüm, kitap boyunca kullanılacak temel tanımlarla bizi tanıştırmaktadır. Üçüncü bölümde, eğriler yüksek boyutlu uzaylarda diferansiyel geometrik açıdan derinlemesine incelenmektir. Dört ve beşinci bölümlerde de özel olarak sırasıyla düzlemde ve 3-boyutlu uzayda çalışıyor olmanın sağladığı avantajlar veya farklılar ile eğriler ve ilgili kavramlar açıklanmaktadır. Özellikle mekanizmaların çalışma prensiplerinde kendine uygulama alanı bulan, bilinen eğri çiftleri altıncı bölümde tanıtılmaktadır. Öklid geometrisinin temel kavramlarının Kartezyen koordinatlarda sayısal formülasyonlara sahip olması gerçeği ile aritmetik ve cebirsel yaklaşımı birleştiren analitik geometrinin, geometrik problemlerle başa çıkmak için güçlü yöntemler sağlamasından dolayı gerçek hayat problemlerinde en çok karşılaştığımız eğriler arasında yer alan konikler yedinci bölümde analitik olarak açıklanmaktadır.
Stok Kodu:9786253971052Boyut:16x24Sayfa Sayısı:336Basım Yeri:AnkaraBasım Tarihi:2023 Nisan
- Taksit Seçenekleri
- Axess KartlarTaksit SayısıTaksit tutarıGenel ToplamTek Çekim256,00256,002128,00256,00385,33256,00Ziraat BankkartTaksit SayısıTaksit tutarıGenel ToplamTek Çekim256,00256,002128,00256,00385,33256,00Maximum KartlarTaksit SayısıTaksit tutarıGenel ToplamTek Çekim256,00256,002128,00256,00385,33256,00Diğer KartlarTaksit SayısıTaksit tutarıGenel ToplamTek Çekim256,00256,002--3--
- Yorumlar
- Yorum yazBu kitabı henüz kimse eleştirmemiş.